CHEMISTRY

Department Overview
Chemistry is the branch of science that tries to understand the relationships between the detailed structure of a substance and its properties and reactivity. Chemistry is concerned both with naturally occurring substances and with new substances that are created by humans. Chemists work to determine why substances differ in their properties and how these properties can be controlled and used effectively. An important objective in chemical education is to develop in students the ability to solve problems by employing the techniques of the various sub-disciplines of chemistry. A student who is majoring in chemistry at Saint Joseph’s University is introduced to all of the major sub-disciplines: analytical chemistry, biochemistry, inorganic chemistry, organic chemistry, and physical chemistry. Throughout the program, emphasis is placed on chemistry as a laboratory science. Consequently, a student majoring in chemistry learns not only the basic theories of chemistry, but also how to use experimental techniques to solve chemical problems. The modern research-grade instrumentation in our laboratories enhances the experimental experiences of our students. Faculty members teach all of the sections of laboratory courses. In addition, chemistry majors are able to engage in faculty-directed independent research projects in the traditional sub-disciplines of chemistry and environmental chemistry during the academic year and/or in the summer. Students often have the opportunity to present the results of their research in the chemical literature and at local, regional, and national scientific meetings. The curriculum for the chemistry major is designed to prepare students for continuing their educations in graduate and professional schools as well as for employment in the chemical and pharmaceutical industries and government laboratories. The American Chemical Society certifies the curriculum of the Bachelor of Science degree in Chemistry.

Departmental Mission
The Department of Chemistry trains students in both the theoretical and experimental aspects of the major sub-disciplines of chemistry. Our modern research-grade instrumentation makes it possible for students to explore contemporary problems in all of these areas. Chemistry majors are encouraged to engage in faculty-directed independent research projects and to present the results of their studies in the chemical literature and at scientific meetings. The curriculum for a chemistry major prepares the graduates to continue their educations in graduate and professional schools or to work in the chemical and pharmaceutical industries and in government laboratories. Our alumni are aware that through chemistry they can continue to make contributions to society that are of service to others.

Advisory Option—Chemistry Premedical
Students planning to enter medical or dental school should take BIO 101-BIO 102.

Advisory Option—Chemistry and Business
Students who intend to pursue studies toward the M.B.A. or who plan careers in the marketing or management areas of the chemical industry should minor in business.

Assistant Professor: J. Scott Niezgoda Ph.D.
Other Title: Brian Forster Ph.D.; John Longo M.A., M.S., NRCC
Chair: Forman

Chemistry in the GEP
(See Curricula [https://academiccatalog.sju.edu/curricula/])
The GEP requires that all students take EITHER one semester of a lab-based natural science course (6 contact hours) OR two semesters of lecture-only natural science courses. Students who wish to satisfy the natural science GEP by completing courses in Chemistry may do so by taking the first semester of the Chemistry majors, lab-based course sequence, CHM 120 and CHM 120L, or one of the lab-based, one-semester chemistry courses for non-science majors. Alternatively, students may fulfill one or both semesters of the natural science GEP by completing one or two of the special one-semester lecture-only Chemistry courses designed for non-science majors listed below. Food Marketing (only) majors fulfill the GEP natural science requirement by taking CHM 112/112L.

Non-science majors Chemistry GEP lecture-only courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 100</td>
<td>Chemistry for the Consumer</td>
<td>3</td>
</tr>
</tbody>
</table>

Non-science majors Chemistry GEP lab-based courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 115</td>
<td>Chemistry in Daily Life</td>
<td>4</td>
</tr>
<tr>
<td>CHM 115L</td>
<td>Chemistry in Daily Life</td>
<td>0</td>
</tr>
<tr>
<td>CHM 112</td>
<td>Food Chemistry (open to Food Marketing majors only)</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112L</td>
<td>Food Chemistry: Lab (open to Food Marketing majors only)</td>
<td>0</td>
</tr>
</tbody>
</table>

Secondary Education Double Major
Requirements for the B.A. in Chemistry In order to become certified to teach at the secondary education level (grades 7-12), students must complete a total of five Education and three Special Education courses, as well as student teaching. For further details, see the Teacher Education section of the catalog. Students interested in the dual major program should speak to their academic advisors and to Chair of the Department of Chemistry as early in their academic careers as possible.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDU 150</td>
<td>Schools in Society w/ Field</td>
<td>3</td>
</tr>
<tr>
<td>EDU 157</td>
<td>Adolescent Development w/Field</td>
<td>3</td>
</tr>
<tr>
<td>EDU 246</td>
<td>Language and Culture w/ Field</td>
<td>3</td>
</tr>
<tr>
<td>EDU 247</td>
<td>Literacy in Cont Areas w/Field</td>
<td>3</td>
</tr>
<tr>
<td>EDU 418</td>
<td>Instr Techniq Science w/Field</td>
<td>3</td>
</tr>
<tr>
<td>EDU 491</td>
<td>Secondary Student Teaching</td>
<td>12</td>
</tr>
<tr>
<td>SPE 160</td>
<td>Intro to Special Education</td>
<td>3</td>
</tr>
<tr>
<td>SPE 205</td>
<td>Inclusive Classrooms w/ Field</td>
<td>3</td>
</tr>
<tr>
<td>SPE 320</td>
<td>Progress Monitoring w/ Field</td>
<td>3</td>
</tr>
</tbody>
</table>
Undergraduate

- Chemistry Major (https://academiccatalog.sju.edu/arts-sciences/chemistry/chemistry-bs-american-chemical-society-certification/)

Undergraduate Minors

- Chemistry Minor (https://academiccatalog.sju.edu/arts-sciences/chemistry/chemistry-minor-chemistry/)

Chemistry and Education combined B.S./M.S.

This program allows a student to complete five years the requirements for both the B.S. in Chemistry and M.S. in Education degrees with certification to teach chemistry by permitting an undergraduate student to begin graduate coursework in Education during his/her senior year. The program features:

1. an independent faculty-directed research project in chemistry in the summer between the fourth and fifth years, and
2. nine graduate courses in education, including a one-semester student teaching experience.

A student should apply to the Chair of the Department of Chemistry for admission to this program by the first semester of his/her sophomore year. It is anticipated that the graduates of this program will be highly competitive in the rapidly expanding market for qualified high school chemistry teachers.

In order to become certified to teach at the secondary education level (grades 7-12), students must complete a total of five Education and three Special Education courses, as well as student teaching. Students interested in the five-year program should speak to their academic advisors and to Chair of the Department of Chemistry as early in their academic careers as possible.

In order to become certified to teach at the secondary education level (grades 7-12), students must complete a total of five Education and three Special Education courses, as well as student teaching. Students interested in the five-year program should speak to their academic advisors and to Chair of the Department of Chemistry as early in their academic careers as possible.

CHM 100 Chemistry for the Consumer (3 credits)

This course is designed to help students understand the chemistry that affects them throughout their lives. Topics include: nuclear chemistry, home products, food and drugs, acid rain, energy, climate control, and sustainability. May be taken for science or elective credit without previous chemistry courses. Successful completion of this course will fulfill a lecture-only natural science course requirement for the GEP natural science area.

Restrictions: Students cannot enroll who have a major in Biology, Chemistry, Chemical Biology, Food Marketing or Physics.

Attributes: GEP Natural Science, Undergraduate

CHM 112 Food Chemistry (4 credits)

The study of chemistry as it specifically relates to food. Underlying basic chemical principles will allow the study of particular molecules found in food (carbohydrates, proteins, lipids) and the changes these molecules undergo as they are cooked and absorbed. Topics will also include preservation, food safety, and food additives. This laboratory course will introduce students to the use of laboratory techniques to study food, including the measurement of food properties including pH, flavor, color, and texture. Students will learn how chemical and physical changes can alter food quality. The content material of CHM 112 overlaps with the content of IHS 253 Nutrition: Health and Disease. Students may take either CHM 112 or IHS 253 not both. Successful completion of CHM 112/112L fulfills the GEP science requirement for Food Marketing majors only. It will serve as a free-elective for all other majors.

Restrictions: Enrollment is limited to students with a major in Food Marketing Co-op or Food Marketing.

Attributes: GEP Natural Science, Science Course w/Lab (Sci Maj), Undergraduate

CHM 112L Food Chemistry: Lab (0 credits)

Students who register for this Chemistry lab must also register for the corresponding lecture. For example, if you register for CHM 112L you must, at the same time, register for CHM 112.

Restrictions: Enrollment is limited to students with a major, minor, or concentration in Food Marketing Co-op or Food Marketing.

Attributes: GEP Natural Science, Undergraduate

CHM 115 Chemistry in Daily Life (4 credits)

This course explains the basic theories and need-to-know facts of scientific events one encounters in daily life from a chemistry perspective. In addition to explaining the fundamental concepts of chemistry, the course will cover topics such as acids and bases, oxidation and reduction, household chemicals, nuclear energy, nuclear medicine, biochemistry, and drugs. This laboratory course will cover a wide range of experiments that require mastering a variety of laboratory skills, which utilize many different types of equipment. The proper use of beakers, flasks, pipets, burets, simple calorimeters, balances, and thermometers, to name a few, is critical to a student’s success in the course. Accurate observations and recording of data is stressed and evaluated. Students will submit data and results forms at the conclusion of each experiment. Both qualitative (observations and descriptions) and quantitative (calculations and graphs) methods will be stressed.

Attributes: GEP Natural Science, Science Course w/Lab (Sci Maj), Undergraduate

CHM 115L Chemistry in Daily Life (0 credits)

Students who register for this Chemistry lab must also register for the corresponding lecture. For example, if you register for CHM 115L you must, at the same time, register for CHM 115.

Attributes: Undergraduate

CHM 120 General Chemistry I (3 credits)

Topics included are chemical formulas, stoichiometry, balancing reactions, ideal gases, thermodynamics, atomic structure, chemical bonding and molecular structure, kinetics, equilibrium, the chemistry of acids and bases, entropy, free energy, and electrochemistry.

Attributes: GEP Natural Science, Science Course w/Lab (Sci Maj), Undergraduate
CHM 120L General Chemistry Lab I (2 credits)
A lecture-laboratory course to accompany CHM 120-125 with emphasis upon concepts in chemistry, quantitative and qualitative analysis, and introduction to instrumental methods. One four-hour period. Successful completion of CHM 120 and CHM 120L fulfills the GEP natural science requirement.
Attributes: GEP Natural Science, Undergraduate

CHM 121 General Chemistry Honors I (3 credits)
The material covered in this honors course is the same as CHM 120-125 but more extensive in depth. Additional topics may be added as time permits. The course assumes that the student has had chemistry in high school. The format of the course may differ from the standard lecture model. Fulfills the GEP natural science requirement.
Attributes: GEP Natural Science, Honors Course, Science Course w/Lab (Sci Maj), Undergraduate

CHM 125 General Chemistry II (3 credits)
Topics included are chemical formulas, stoichiometry, balancing reactions, ideal gases, thermodynamics, atomic structure, chemical bonding and molecular structure, kinetics, equilibrium, the chemistry of acids and bases, entropy, free energy, and electrochemistry.
Prerequisites: CHM 120 or CHM 121
Attributes: Science Course w/Lab (Sci Maj), Undergraduate

CHM 125L General Chemistry Lab II (2 credits)
A lecture-laboratory course to accompany CHM 120-125 with emphasis upon concepts in chemistry, quantitative and qualitative analysis, and introduction to instrumental methods. One four-hour period.
Prerequisites: CHM 120L
Attributes: Undergraduate

CHM 126 General Chemistry Honors II (3 credits)
The material covered in this honors course is the same as CHM 120-125 but more extensive in depth. Additional topics may be added as time permits. The course assumes that the student has had chemistry in high school. The format of the course may differ from the standard lecture model.
Prerequisites: CHM 120 or CHM 121
Attributes: Honors Course, Science Course w/Lab (Sci Maj), Undergraduate

CHM 150 First Year Seminar (3 credits)
The First-Year Seminar (FYS) is designed to introduce students to the adventures of learning in a college context. The challenge and excitement of intellectual exploration of a topic of shared interest is its prime purpose. First-Year Seminars focus in depth on a question or topic of disciplinary or interdisciplinary interest. By means of its specific focus, the seminar will explore the thinking, research, and writing practices in a particular field. Discussions based on careful reading of texts, writing assignments, both reflection and research types, and in-class student presentations will be supplemented, as appropriate, with activities including guest lecturers, museum trips, attendance at local cultural events and/or field excursions. Topics vary according to individual instructors. First year seminar.
Attributes: First-Year Seminar, Undergraduate

CHM 170 Special Topics in Chemistry (3 credits)
Advanced study on a topic that is arranged with a Chemistry faculty member.
Attributes: Undergraduate

CHM 210 Organic Chemistry I (3 credits)
Modern organic chemistry in which the treatment of aliphatic and aromatic compounds is integrated as much as possible. Reactions of the functional groups are explained in terms of electronic mechanisms.
Prerequisites: CHM 125 or CHM 126
Attributes: Undergraduate

CHM 210L Organic Chemistry Lab I (1 credit)
This semester concentrates on experiments designed to introduce students to the various techniques used in the organic laboratory.
Prerequisites: CHM 125L
Attributes: Undergraduate

CHM 215 Organic Chemistry II (3 credits)
Modern organic chemistry in which the treatment of aliphatic and aromatic compounds is integrated as much as possible. Reactions of the functional groups are explained in terms of electronic mechanisms.
Prerequisites: CHM 210
Attributes: Undergraduate

CHM 215L Organic Chemistry Lab II (1 credit)
A continuation of CHM 210L utilizing micro scale laboratory techniques in organic chemistry for the preparation, purification and analysis of organic compounds.
Prerequisites: CHM 210L
Attributes: Undergraduate

CHM 270 Special Topics in Chemistry (3 credits)
Advanced study on a topic that is arranged with a Chemistry faculty member.
Attributes: Undergraduate

CHM 293 Sophomore Research Studies I (3,6 credits)
Integrated literature and laboratory investigation of an assigned problem under the supervision of a departmental faculty member. Each credit of CHM 293-294 requires four hours each week in the research laboratory. Students need to complete the application form for independent study and have the approval of the Chemistry Department Chair and Associate Dean in order to register.
Attributes: Undergraduate

CHM 294 Sophomore Research Studies II (3,6 credits)
Integrated literature and laboratory investigation of an assigned problem under the supervision of a departmental faculty member. Each credit of CHM 293-294 requires four hours each week in the research laboratory. Students need to complete the application form for independent study and have the approval of the Chemistry Department Chair and Associate Dean in order to register.
Attributes: Undergraduate

CHM 310 Physical Chemistry I (3 credits)
Quantum Chemistry. The fundamental postulates of quantum mechanics are introduced in the form of historical narrative to illustrate the logical progression to quantization in natural theory. Eigenvalue problems, operator mathematics, uncertainties and orthonormality are discussed as essential portions of quantum mechanical calculations. The Schrodinger equations for the harmonic oscillator and rigid rotor are solved and related specifically to molecular spectroscopy techniques. The course ends with the description of the hydrogen atom in terms of quantum mechanics, with emphasis on the origin of the familiar atomic orbitals.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 310L Physical Chemistry Lab I (2 credits)
Experiments are performed to reinforce the concepts learned in CHM 310
Attributes: Undergraduate
CHM 315L Physical Chemistry Lab II (2 credits)
Study of atomic and molecular species and/or processes.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 320 Physical Chem for Chem Bio (3 credits)
Study of atomic and molecular structure; chemical thermodynamics; states of matter; kinetics and mechanisms of reactions; phase and chemical equilibria; emphasis on applications in biological systems.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 330 Instrumental Analysis (3 credits)
This course covers the theory methodology, and instrumentation for the study of atomic and molecular species and/or processes.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 330L Instrumental Analysis Lab (2 credits)
CHM 330 is a co-requisite to CHM 330L.
Prerequisites: CHM 215L
Attributes: Undergraduate

CHM 340 Biochemistry (3 credits)
A basic introduction to the chemistry of living systems emphasizing their major metabolic activities. Structure and function of proteins, lipids, and carbohydrates. Basic principles of intermediary metabolism and photosynthesis.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 340L Biochemistry Lab (1 credit)
Laboratory applications of the topics covered in CHM 340. CHM 340 is a co-requisite to CHM 340L.
Prerequisites: CHM 215L and CHM 340 (may be taken concurrently)
Attributes: Undergraduate

CHM 350 Inorganic Chemistry (3 credits)
This course includes the study of atomic structure, bonding, molecular orbital theory, symmetry and group theory, the chemistry of the main group elements, and the structure and reactivity of transition metal complexes.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 350L Inorganic Chemistry Lab (2 credits)
This course focuses on synthetic inorganic chemistry and emphasizes the use of modern analytical techniques for the characterization of inorganic and organometallic compounds. CHM 350L is a co-requisite for CHM 350.
Prerequisites: CHM 215L
Attributes: Undergraduate

CHM 360 Nanochemistry (3 credits)
This course covers the synthesis, characterization and physical properties of materials chemistry systems on the length scale of individual molecules. Emphasis is placed on the distinction between macro- and nanoscale properties of matter. Course topics to include (but not limited to): quantum confinement in semiconductor nanocrystals; localized surface plasmon resonance (LSPR), superhydrophobicity in self-assembled monolayers; electronic and mechanical properties of 2D materials
Prerequisites: CHM 215 and (MAT 161 or MAT 155) and (PHY 102 (may be taken concurrently) or PHY 106 (may be taken concurrently))
Attributes: Undergraduate

CHM 370 Special Topics in Chemistry (3 credits)
Advanced study on a topic that is arranged with a Chemistry faculty member.
Attributes: Undergraduate

CHM 390 Chemistry Seminar (0 credits)
Lectures by outside and local speakers and discussions of special topics in chemistry. Enrollment is required each semester for junior and senior chemistry majors. Graded on a P/NP basis.
Attributes: Undergraduate

CHM 393 Junior Research I (3,6 credits)
Integrated literature and laboratory investigation of an assigned problem under the supervision of a departmental faculty member. Each credit of CHM 393-394 requires four hours each week in the research laboratory. Students need to complete the application form for independent study (available in the Dean's Office) and have the approval of the Chemistry Department chair and Associate Dean in order to register.
Attributes: Undergraduate

CHM 394 Junior Research II (3,6 credits)
Integrated literature and laboratory investigation of an assigned problem under the supervision of a departmental faculty member. Each credit of CHM 393-394 requires four hours each week in the research laboratory. Students need to complete the application form for independent study (available in the Dean's Office) and have the approval of the Chemistry Department chair and Associate Dean in order to register.
Prerequisites: CHM 393 or CHM 293
Attributes: Undergraduate

CHM 400 Chemistry of the Earth (3 credits)
This course examines the chemical processes that control the distribution, speciation, and transfer of essential elements and energy in natural systems. Topics include: the concept of the Earth as a biogeochemical system; the use of quantitative methods to model the chemical fluxes of elements on a global scale; dominant chemical reactions in natural environments; evolution of metabolic pathways; the biogeochemical cycling of water, carbon, nitrogen, phosphorus, sulfur, and select heavy metals under natural and anthropogenically-influenced conditions. CHM 340 can be taken concurrently with CHM 400.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 410 Biophysical Chemistry (3 credits)
This course utilizes the concepts of physical chemistry to understand the properties of biological systems.
Prerequisites: CHM 310 or CHM 320
Attributes: Undergraduate
CHM 410L Biophysical Chemistry Lab (1 credit)

CHM 420 Environmental Chemistry (3 credits)
This course will examine natural and polluted environmental settings, with topics including atmospheric chemistry and air pollution, energy and climate change, water chemistry and water pollution, soils and sediments, fate of toxic metals and toxic organic compounds, and green chemistry.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 430 Mechanisms in Organic Chem (3 credits)
Application of the electron pushing formalism for manipulating Lewis structure representations of organic structures. Emphasis is placed on mechanistic rationalization of complex organic transformations. Classes of mechanisms include elimination, substitution, rearrangement, oxidation-reduction, enolate alkylation, and others.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 435 Tech Applications of Chemistry (3 credits)
Course will focus on current and future technologies that utilize fundamental and advanced theories of chemistry. Topics will include, but are not limited to, microwave ovens, liquid crystal displays (LCD), light emitting diode displays (LED), plasma screens, charge coupled devices (CCD), field effect transistors (FET), positron emission tomography (PET), magnetic resonance imaging (MRI), battery systems, data storage devices, and solar panels.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 440 Organometallic Chemistry (3 credits)
This course will focus on the structure and reactivity of organometallic transition metal complexes. Topics include catalysis, reaction mechanisms, applications to organic chemistry, and characterization by spectroscopic methods.
Prerequisites: CHM 350
Attributes: Undergraduate

CHM 445 Thermodynamics & Stat Mechanic (3 credits)

CHM 450 Polymer Chemistry (3 credits)

CHM 460 Water Chemistry (3 credits)
This course examines the behavior of chemical species in natural and engineered water systems. Topics include: the chemical composition of surface and subsurface water; geochemical controls on water composition; equilibrium and kinetic processes in aquatic systems; fate and reactions of inorganic and organic constituents in water; acid-base chemistry, complexation chemistry, and redox chemistry in water; the applications of isotopic and other tracers in the study of aquatic systems; and water pollution.
Prerequisites: CHM 215
Attributes: Undergraduate

CHM 470 Special Topics (3 credits)
Advanced study on a topic that is arranged with a chemistry faculty member. Permission of the Department of Chemistry chair is required.
Attributes: Undergraduate

CHM 480 The Role of Metals in Biochem (3 credits)
The chemical and biological properties of various metal ions in biological systems will be examined at the molecular level. Permission of the Department of Chemistry chair is required.
Prerequisites: CHM 215 and CHM 340
Attributes: Undergraduate

CHM 490 Spectroscopy (3 credits)
This course provides an exposure to aspects of spectroscopic theory, methods, and instrumentation that are not covered in Instrumental Analysis.
Prerequisites: CHM 330
Attributes: Undergraduate

CHM 491 Chemistry Internship I (3 credits)

CHM 492 Chemistry Internship II (3 credits)

CHM 493 Senior Research I (3,6 credits)
Integrated literature and laboratory investigation of an assigned problem under the supervision of a departmental faculty member. Includes a seminar, a poster presentation, and written reports. Each credit of CHM 493 and CHM 494 requires four hours each week in the research laboratory. Students need to complete the application form for independent study (available in the Dean's Office) and have the approval of the Chemistry Department chair and Associate Dean in order to register.
Attributes: Undergraduate

CHM 494 Senior Research II (3,6 credits)
Integrated literature and laboratory investigation of an assigned problem under the supervision of a departmental faculty member. Includes a seminar, a poster presentation, and written reports. Each credit of CHM 493 and CHM 494 requires four hours each week in the research laboratory. Students need to complete the application form for independent study (available in the Dean's Office) and have the approval of the Chemistry Department chair and Associate Dean in order to register.
Prerequisites: CHM 493
Attributes: Undergraduate